Posted in Algebra

A basis for the non-crossing partition lattice top homology - download pdf or read online

By Zoque E.

Show description

Read or Download A basis for the non-crossing partition lattice top homology PDF

Best algebra books

Download e-book for iPad: Making Groups Work: Rethinking Practice by Joan Benjamin

So much folks paintings in them, so much people dwell in them. a few are complicated, a few are uncomplicated. a few meet just once whereas others final for many years. no matter what shape they take, teams are important to our lives. Making teams paintings bargains a finished advent to the major matters in crew paintings. It outlines the position of teams and the background of staff paintings, discusses staff politics, and indicates how teams may help advertise social swap.

Extra info for A basis for the non-crossing partition lattice top homology

Example text

Since Rx = Re for some e = e 2 eR, we may assume x is idempotent. Let yE xR n EBejR. Then xy = 0 = y, so xR = O. Now every map f: EB ejR -7 EBejR is given by left multiplication by an element mt E R, and the preceding says mt is unique. EBjejR) contains the "diagonal" cyclic R-module. n e; Re j . 23 can be rephrased i. d. (R/ I) = 0, VI f:. R => gl. d. (R) = O. d. (R/I)';;;; I for all I, absolutely no conclusion about gl. d. (R) can be drawn without extra hypotheses on R. We will come back to this later.

M R ) = gl. d. 11) <==> w. d. (R M). = 0, \lA and VB ~=> i. d. 10 for EA)' The same proof works for weak dimensions. Definition. gl. p. d. (R M) is called the left global dimension of R (I. g1. d. (R)), gl. p. d. (M R ) is the right global dimension of R (written gl. d. (R) since in general we will work in MR ). gl. W. d. (M R ) is called the weak global dimension of R. gl. w. d. (R) is independent of sides. " 36 BARBARA L. OSOFSKY Remark. gl. w. d. (R):S;;; 1. d. (R) since KnA projective => Kn(A) is flat.

If R is regular, select x E J - J2, and set R* By induction, p. d. ((J/xR)R') =n = R/xR. - 2. 26, p. d. ((J/xR)R) J(R*) =n - = J/xR. 1= p. d. 25. If p. d. 30, Then we have an exact sequence 0 - Rx/Jx - 3x JjJx - E J - J 2 , X not a zero divisor in R. J/Rx - O. Let JjJ2 = Rx/Jx EB D, U the preimage of U in J. By Nakayama's lemma Rx + U=1. Let y E Rx n U. Then y = rx E U so rx E J2 and rE J. d. d. d. (J/Rx R ,) <: n - 1 < 00. d. d. d. d. (JR )= n - 1. d. (J/Rx R ,) = n - 2. By the induction hypothesis R/xR is regular local of dimension n - I and since x is not contained in any minimal prime, R is regular local of dimension n.

Download PDF sample

A basis for the non-crossing partition lattice top homology by Zoque E.


by Joseph
4.2

Rated 4.52 of 5 – based on 3 votes